Sharp lower bounds of the least eigenvalue of planar graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Sharp lower bounds for the Zagreb indices of unicyclic graphs

The first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices of the respective graph. In this paper we present the lower bound on M1 and M2 among all unicyclic graphs of given order, maximum degree, and cycle length, and characterize graphs for which th...

متن کامل

The Least Eigenvalue of Graphs

In this paper we investigate the least eigenvalue of a graph whose complement is connected, and present a lower bound for the least eigenvalue of such graph. We also characterize the unique graph whose least eigenvalue attains the second minimum among all graphs of fixed order.

متن کامل

Lower Bounds for Planar Orthogonal Drawings of Graphs

We study planar orthogonal drawings of graphs and provide lower bounds on the number of bends along the edges. We exhibit graphs on n vertices that require (n) bends in any layout, and show that there exist optimal drawings that require (n) bends and have all of them on a single edge of length (n 2). This work nds applications in VLSI layout, aesthetic graph drawing, and communication by light ...

متن کامل

some lower bounds for the $l$-intersection number of graphs

‎for a set of non-negative integers~$l$‎, ‎the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$‎. ‎the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1999

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(99)00129-9